These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coiled-coil structure of group A streptococcal M proteins. Different temperature stability of class A and C proteins by hydrophobic-nonhydrophobic amino acid substitutions at heptad positions a and d. Author: Cedervall T, Johansson MU, Akerström B. Journal: Biochemistry; 1997 Apr 22; 36(16):4987-94. PubMed ID: 9125521. Abstract: M proteins and M-like proteins, expressed on the surface of group A streptococci and binding to human plasma proteins, can be divided into two classes, A and C, depending on the structure of the central repeated regions. The class C proteins have been shown to be dimers with a coiled-coil structure. In this work, we have compared the structure and binding of a class A protein, Mrp4, and a class C protein, Arp4, expressed by the same bacterial strain. Circular dichroism spectra, gel filtration, and binding assays showed that both proteins had a coiled-coil dimer configuration and a high-affinity binding at 20 degrees C. However, striking differences were seen at 37 degrees C. The class A protein, Mrp4, was still a coiled-coil dimer with high affinity binding activity, whereas the class C protein, Arp4, had lost both the coiled-coil structure and binding activity. Raising the temperature even higher, Mrp4 retained the coiled-coil structure up to 70-90 degrees C. Furthermore, a recombinant protein, Mrp(C), in which the A-repeats of Mrp4 were replaced by the C-repeats of Arp4, lost its coiled-coil structure and fibrinogen-binding around 40-45 degrees C. These results suggest a high thermal stability of class A proteins and a low stability of class C proteins and that the structural basis for this can be found partly in the A- and C-repeats. Analysis of the amino acid sequences of the A- and C-repeats, revealed a large difference, 87% and 45%, respectively, in the content of hydrophobic amino acid residues in the positions regarded as important for the formation of the coiled-coil structure. In particular, several alanine residues in the A-repeats were replaced by serine residues in the C-repeats. Our results suggest that important structural and functional changes within the M protein family have evolved by specific hydrophobic-nonhydrophobic amino acid replacements.[Abstract] [Full Text] [Related] [New Search]