These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen regulates vascular endothelial growth factor-mediated vasculogenesis and tubulogenesis.
    Author: Tufro-McReddie A, Norwood VF, Aylor KW, Botkin SJ, Carey RM, Gomez RA.
    Journal: Dev Biol; 1997 Mar 15; 183(2):139-49. PubMed ID: 9126290.
    Abstract:
    To determine whether low oxygen is a stimulus for endothelial cell differentiation and vascular development in the kidney, we examined the effect of low oxygen on rat metanephric organ culture, a model known to recapitulate nephrogenesis in the absence of vessels. After 6 days in culture in standard (20% O2) or low oxygen (1-3% O2) conditions, metanephric kidney growth and morphology were assessed by DNA measurement, and light and electron microscopy. DNA content was higher in 3% O2-treated explants (2.5 +/- 0.17 microgram/kidney, n = 9) than in 20% O2 explants (1.5 +/- 0.09 microgram/kidney, n = 9), P < 0.05. Low oxygen induced proliferation of tubular epithelial cells, resulting in enhanced number of tubules of similar size. Endothelial cells forming capillaries were localized in 3% O2 explants by light and electron microscopy and by immunocytochemistry using endothelial cell markers. Flt-1, Flk-1, and ACE-containing cells were detected in 3% O2-treated explants, whereas 20% O2 explants were virtually negative. VEGF mRNA levels were 10-fold higher in 3% O2-treated explants than in 20% O2-treated explants. Addition of anti-VEGF antibodies to 3% O2-treated explants prevented low oxygen-induced growth and endothelial cell differentiation and proliferation. Our data indicate that low oxygen stimulates growth by cell proliferation and induces tubulogenesis, endothelial cell differentiation, and vasculogenesis in metanephric kidneys in culture. Upregulation of VEGF expression by low oxygen and prevention of low oxygen-induced tubulogenesis and vasculogenesis by anti-VEGF antibodies indicate that these changes were mediated by VEGF. These data suggest that low oxygen is the stimulus to initiate renal vascularization.
    [Abstract] [Full Text] [Related] [New Search]