These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential expression of nonmuscle myosin II isoforms in human atherosclerotic plaque. Author: Nikol S, Murakami N, Pickering JG, Kearney M, Leclerc G, Höfling B, Isner JM, Weir L. Journal: Atherosclerosis; 1997 Apr; 130(1-2):71-85. PubMed ID: 9126650. Abstract: Intimal proliferation and functional changes involving vascular smooth muscle cells are key events in the development of atherosclerosis, including restenosis after percutaneous transluminal angioplasty. Nonmuscle myosin (NMM) is required for cytokinesis and has been shown in cultures of vascular smooth muscle cells to undergo changes of isoform expression depending on the stage of proliferation and differentiation. The purpose of this study was to examine the differential expression of the two most recently identified nonmuscle myosin heavy chain isoform II (NMMHC-II) isoforms A and B in atherosclerotic plaque. Primary atherosclerotic and restenotic atherectomy specimens and non-atherosclerotic controls, were analyzed by Western Blot analysis, immunohistochemistry and in situ hybridization. Nonmuscle myosin heavy chain isoform IIA (NMMHC-IIA) was equally expressed in all types of tissue specimens both at the protein and mRNA levels. In contrast, NMMHC-IIB protein was found in restenotic specimens and normal artery but was at very low levels in primary atherosclerotic plaque. By in situ hybridization NMMHC-IIB mRNA levels were significantly greater in restenotic versus primary atherosclerotic lesions. NMMHC-IIB expression is associated with vascular restenosis but is downregulated in stable atherosclerotic lesions, whereas NMMHC-IIA is expressed in both. These results indicate that these new myosin isoforms have different functions and should be regarded separately with respect to smooth muscle proliferation and restenosis. They should prove to be useful molecular markers for the study of atherosclerosis and restenosis.[Abstract] [Full Text] [Related] [New Search]