These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Carotid artery and jugular vein ligation with and without hypoxia in the rat. Author: Klein MD, Lessin MS, Whittlesey GC, Chang CH, Becker CJ, Meyer SL, Smith AM. Journal: J Pediatr Surg; 1997 Apr; 32(4):565-70. PubMed ID: 9126755. Abstract: A continuing concern about the use of extracorporeal membrane oxygenation (ECMO) is the cannulation of the common carotid artery or the internal jugular vein. The authors investigated the changes that might occur in the brain with neck vessel ligation in the normal and the hypoxic rat. Two groups of 60 rats each were studied. The first group was divided into three subgroups of 20 animals each. Subgroup 1 (HH) was hypoxic both 24 hours before and 24 hours after operation. Subgroup 2 (HN) (the ECMO model) was hypoxic before operation and recovered for 24 hours in room air. Subgroup 3 (NN) underwent the entire procedure in room air. For each oxygen environment, four different operations were performed: carotid artery ligation, jugular vein ligation, carotid artery and jugular vein ligation, and dissection of the vessels without ligation (sham). Thus each subgroup was further divided into four sub-subgroups based on the operation performed. Rats were again anesthetized after a 24-hour recovery period and killed using low, blunt cervical dislocation. In the first group of 60 rats, the skull was opened and the brain was carefully removed from the cranial vault and placed in a fixative. The brains were placed in a small magnetic resonance imaging (MRI) head coil in groups of five and scans were obtained to provide T1 and T2 images that correlated with histological sections. MRI scans were reviewed in random, blinded fashion by an imager unaware of how these animals had been treated. The brains were then sectioned coronally at six corresponding levels: frontal, mid and posterior cerebrum, midbrain, pons, and medulla. Histological examination was performed in blinded fashion. The number of lesions (usually ischemic as noted by a decrease in the number of neurons) was totaled for each area of the brain. There were no differences that were consistent or statistically significant in the MR images of brains removed from the head, although it would appear that rats with jugular vein and carotid artery ligation were relatively protected. In the HN group jugular vein ligation was worst, and adding carotid artery ligation was best. In the histological studies the NN group had significantly more lesions than the HH group (P < .01). The second group of 60 rats was divided and treated as the first group in all respects except that MRI was conducted immediately after death on intact heads, and no histological studies were performed. This was done to control for lesions that might have been produced by removal of the brains from the skulls. In this group all findings were right sided. One animal in the HN group showed midcerebral white matter edema after jugular and carotid ligation. Focal anterior cerebral edema was seen in another animal (HH) after isolated carotid ligation. An occipital infarct was found in one animal (HH) after both carotid and jugular ligation. The authors conclude that neck vessel ligation in the hypoxic or normoxic rat causes only occasional and sporadic brain injury much as is seen clinically in newborn ECMO patients.[Abstract] [Full Text] [Related] [New Search]