These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of calcium in maintaining the heme environment of manganese peroxidase. Author: Sutherland GR, Zapanta LS, Tien M, Aust SD. Journal: Biochemistry; 1997 Mar 25; 36(12):3654-62. PubMed ID: 9132018. Abstract: We previously demonstrated that manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium was very susceptible to thermal inactivation due to the loss of calcium from the enzyme [Sutherland & Aust (1996) Arch. Biochem. Biophys. 332, 128-134]. The structural changes that occur during thermal inactivation and the release of calcium from manganese peroxidase have now been characterized. Thermal inactivation caused distinct alterations in the heme environment and slight changes in the overall protein structure, both of which were reversed upon reactivation of the enzyme with calcium. The absorption spectrum of inactivated manganese peroxidase was similar to that of low-spin ferric heme proteins, indicating that a sixth ligand had bound to the distal side of the heme iron. Consistent with disruption of the distal heme environment, thermally inactivated manganese peroxidase did not react with hydrogen peroxide to form compound I. The inactive enzyme exhibited a pH-dependent absorption transition with a pKa of 5.7. Studies involving imidazole indicated that the sixth ligand may be a distal histidine. Low-temperature electron paramagnetic resonance spectroscopy confirmed that the heme iron of the inactivated form of manganese peroxidase was predominantly in a low-spin state. The near-ultraviolet/visible circular dichroism spectrum also supported the proposed formation of a highly symmetric bis(imidazole) heme complex upon thermal inactivation of the enzyme. A recombinant manganese peroxidase, in which the distal calcium binding site was altered such that calcium binding would be minimized, was also characterized. This enzyme, D47A, had the same catalytic and spectroscopic properties and calcium content as thermally inactivated manganese peroxidase. Therefore, the inactivation and structural changes that occurred during thermal incubation of manganese peroxidase could be explained by the loss of the distal calcium.[Abstract] [Full Text] [Related] [New Search]