These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ADP-fluoroaluminate complexes are formed cooperatively at two catalytic sites of wild-type and mutant alpha3beta3gamma subcomplexes of the F1-ATPase from the thermophilic Bacillus PS3. Author: Dou C, Grodsky NB, Matsui T, Yoshida M, Allison WS. Journal: Biochemistry; 1997 Mar 25; 36(12):3719-27. PubMed ID: 9132025. Abstract: Addition of Al3+ and F- to the alpha3beta3gamma subcomplex of the TF1-ATPase containing MgADP in one catalytic site causes slow, complete inactivation as the ADP-fluoroaluminate complex is formed. This conflicts with the "bisite" stochastic model suggested earlier (Issartel, J. P., Dupuis, A., Lunardi, J. & Vignais, P. V. (1991) Biochemistry 30, 4726-4733] on the finding that complete inactivation of the bovine mitochondrial F1-ATPase by Al3+, F-, Mg2+, and excess ADP occurs as ADP-fluoroaluminate complexes form in two catalytic sites. When Al3+ and F- were added to alpha3beta3gamma containing MgADP in two catalytic sites, inactivation accelerated 8-fold, indicating catalytic to catalytic site cooperativity. When added to alpha3beta3gamma containing MgADP bound to one or two catalytic sites prior to addition of Al3+ and F-, phosphate inhibits formation of the ADP-fluoroaluminate complex. When introduced after adding 200 microM ADP plus Mg2+ to alpha3beta3gamma, but before adding Al3+ and F-, phosphate accelerated formation of the ADP-fluoroaluminate complex 3-fold. Sulfite accelerated formation of the ADP-fluoroaluminate complex 9-fold when 200 microM ADP plus Mg2+ was added to alpha3beta3gamma before adding Al3+ and F-. The accelerations induced by phosphate or sulfite in the presence of excess ADP and Mg2+ suggest noncatalytic to catalytic site cooperativity. When Al3+ and F- were added to the (alphaD261N)3beta3gamma subcomplex containing MgADP in a single catalytic site, the ADP-fluoroaluminate complex formed at least 10-fold more slowly than observed with wild-type under the same conditions. Therefore, the catalytic site containing MgADP recognizes the alphaD261N substitution when noncatalytic sites are empty. Cross-linking alpha to gamma or beta to gamma by oxidizing the (alphaA396C)3beta3(gammaA22C) and alpha3(betaD390C)3(gammaS90C) subcomplexes, respectively, abolishes cooperative formation of ADP-fluoroaluminate complexes in two catalytic sites. ADP-fluoroaluminate complex formation is restricted to a single catalytic site in the oxidized double mutants. The alpha3beta3delta subcomplex does not form an inhibitory ADP-fluoroaluminate complex under any of the conditions examined for the alpha3beta3gamma subcomplexes.[Abstract] [Full Text] [Related] [New Search]