These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabotropic glutamate receptor subtypes mediating slow inward tail current (IADP) induction and inhibition of synaptic transmission in olfactory cortical neurones. Author: Libri V, Constanti A, Zibetti M, Postlethwaite M. Journal: Br J Pharmacol; 1997 Mar; 120(6):1083-95. PubMed ID: 9134221. Abstract: 1. The pharmacological features of the pre- and postsynaptic metabotropic glutamate receptors (mGluRs) present in the guinea-pig olfactory cortex, were examined in brain slices in vitro by use of a conventional intracellular current clamp/voltage clamp recording technique. 2. Bath-application of trans-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (50 microM) produced a sustained membrane depolarization, increase in cell excitability and induction of a post-stimulus inward (after depolarizing) tail current (IADP) (measured under 'hybrid' voltage clamp) similar to those evoked by the muscarinic receptor agonist oxotremorine-M (OXO-M, 2 microM). 3. L-Glutamate (0.25 1 mM. in the presence of 20 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 microM-DL-amino-5-phosphono valeric acid (DL-APV)) or the broad spectrum mGluR agonists 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 microM), 1S,3S-ACPD (50 microM), ibotenate (Ibo; 25 microM. in the presence of 100 microM DL-APV), the selective mGluR I agonists (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG, 10 microM), (S)-3-hydroxyphenylglycine ((S)-3HPG, 50 microM), or quisqualate (10 microM, in the presence of 20 microM CNQX), but not the mGluR II agonist 2S,1'S,2'S-2-(2'-carboxycyclopropyl)-glycine (L-CCG1,1 microM) or mGluR III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 1 mM), were all effective in producing membrane depolarization and inducing a post-stimulus IADP. Unexpectedly, the proposed mGluR II-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)-glycine (DCG-IV, 10 microM, in the presence of 100 microM DL-APV) was also active. 4. The excitatory effects induced by 10 microM 1S,3R-ACPD were reversibly antagonized by the mGluR I/II antagonist (1)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG, 0.5 1 mM), as well as the selective mGluR I antagonists (S)-4-carboxyphenylglycine ((S)-4CPG) and (S)-4-carboxy-3-hydroxyphenyl glycine ((S)-4C3HPG) (both at 1 mM), but not the nonselective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3, 1 mM) or the selective mGluR III antagonist (S)-alpha-methyl-L-AP4 (MAP4, 1 mM). 5. The excitatory postsynaptic potentials (e.p.s.ps), induced by single focal stimulation of cortical excitatory fibre tracts, were markedly reduced by 1S,3R-ACPD or L-AP4 (both at 10 microM), and by the selective mGluR II agonists (mGluR 1 antagonists) (S)-4CPG or (S)-4C3HPG (both at 1 mM) but not (S)-3,5-DHPG or (S)-3HPG (both at 100 microM). 6. The inhibitory effects of 1S-3R-ACPD, but not L-AP4, were reversibly blocked by (+)-MCPG (1 mM), whereas those produced by L-AP4, but not 1S,3R-ACPD, were blocked by the selective mGluR III antagonist MAP4 (1 mM). 7. It is concluded that a group I mGluR is most likely involved in mediating excitatory postsynaptic effects, whereas two distinct mGluRs (e.g. group II and III) might serve as presynaptic inhibitory autoreceptors in the guinea-pig olfactory cortex.[Abstract] [Full Text] [Related] [New Search]