These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Homonojirimycin and N-methyl-homonojirimycin inhibit N-linked oligosaccharide processing. Author: Zeng Y, Pan YT, Asano N, Nash RJ, Elbein AD. Journal: Glycobiology; 1997 Mar; 7(2):297-304. PubMed ID: 9134436. Abstract: Homonojirimycin (HNJ) and N-methylhomonojirimycin (MHNJ) were tested as inhibitors of the purified glycoprotein processing enzymes, glucosidase I and glucosidase II. MHNJ was a reasonably good inhibitor of glucosidase I (Ki = 1 x 10(-6) M) and was about three times as effective on this enzyme as was HNJ. On the other hand, HNJ inhibited glucosidase II with a Ki of about 1 x 10(-6) M, whereas MHNJ was three times less effective (Ki = 3 x 10(-5) M). However, the butyl derivative of HNJ had very low activity toward these two processing glucosidases. HNJ and its methyl derivative were also tested in vivo using influenza virus-infected MDCK cells, and measuring the inhibition of N-linked oligosaccharide processing of the viral envelope glycoproteins. With 100 micrograms/ml of MHNJ in the medium, essentially all of the N-linked oligosaccharide chains of the virus were of the "high-mannose" type with the major structure being characterized as Glc3Man9(GlcNAc)2. Similar results were obtained with HNJ although this compound was less effective in vivo as well as in vitro. These results are in keeping with these inhibitors being effective at the glucosidase I step. Both inhibitors were also tested in MDCK cell cultures to determine whether they affected the in vivo synthesis of proteins, or of lipid-linked saccharides. In contrast to deoxynojirimycin, which has been reported to inhibit the formation of lipid-linked saccharides, no effects were seen on either the incorporation of mannose into lipid-linked saccharides or the incorporation of leucine into protein.[Abstract] [Full Text] [Related] [New Search]