These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro clot lysis as a potential indicator of thrombus resistance to fibrinolysis--study in healthy subjects and correlation with blood fibrinolytic parameters.
    Author: Colucci M, Scopece S, Gelato AV, Dimonte D, Semeraro N.
    Journal: Thromb Haemost; 1997 Apr; 77(4):725-9. PubMed ID: 9134650.
    Abstract:
    Using an in vitro model of clot lysis, the individual response to a pharmacological concentration of recombinant tissue plasminogen activator (rt-PA) and the influence on this response of the physiological variations of blood parameters known to interfere with the fibrinolytic/thrombolytic process were investigated in 103 healthy donors. 125I-fibrin labelled blood clots were submersed in autologous plasma, supplemented with 500 ng/ml of rt-PA or solvent, and the degree of lysis was determined after 3 h of incubation at 37 degrees C. Baseline plasma levels of t-PA, plasminogen activator inhibitor 1 (PAI-1), plasminogen, alpha 2-antiplasmin, fibrinogen, lipoprotein (a), thrombomodulin and von Willebrand factor as well as platelet and leukocyte count and clot retraction were also determined in each donor. rt-PA-induced clot lysis varied over a wide range (28-75%) and was significantly related to endogenous t-PA, PAI-1, plasminogen (p < 0.001) and age (p < 0.01). Multivariate analysis indicated that both PAI-1 antigen and plasminogen independently predicted low response to rt-PA. Surprisingly, however, not only PAI-1 but also plasminogen was negatively correlated with rt-PA-induced clot lysis. The observation that neutralization of PAI-1 by specific antibodies, both in plasma and within the clot, did not potentiate clot lysis indicates that the inhibitor, including the platelet-derived form, is insufficient to attenuate the thrombolytic activity of a pharmacological concentration of rt-PA and that its elevation, similarly to the elevation of plasminogen, is not the cause of clot resistance but rather a coincident finding. It is concluded that the in vitro response of blood clots to rt-PA is poorly influenced by the physiological variations of the examined parameters and that factors other than those evaluated in this study interfere with clot dissolution by rt-PA. In vitro clot lysis test might help to identify patients who may be resistant to thrombolytic therapy.
    [Abstract] [Full Text] [Related] [New Search]