These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP and [3H]noradrenaline release and the presence of ecto-Ca(2+)-ATPases in the capsule-glomerulosa fraction of the rat adrenal gland.
    Author: Jurányi Z, Orsó E, Jánossy A, Szalay KS, Sperlágh B, Windisch K, Vinson GP, Vizi ES.
    Journal: J Endocrinol; 1997 Apr; 153(1):105-14. PubMed ID: 9135575.
    Abstract:
    Both [3H]noradrenaline ([3H]NA) and ATP were released in response to supramaximal electric field stimulation in superfused rat adrenal capsule-glomerulosa preparations. The voltage-dependent potassium channel blocker 4-aminopyridine enhanced, while the ATP-sensitive potassium channel blocker glibenclamide failed to affect the stimulation-evoked release of [3H]NA. The selective alpha 2-adrenoceptor antagonist CH-38083 enhanced the evoked release of [3H]NA while the P2 receptor agonist ATP and alpha, beta-methylene-ATP failed to affect it. Neither the adenosine A1 receptor agonist N6-cyclopentyl-adenosine (CPA) nor the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) influenced the stimulation-evoked [3H]NA release. The data showed that ATP was released from capsule-glomerulosa preparations in response to field stimulation together with but independently from [3H]NA, and that the local noradrenergic varicose axon terminals are not equipped with purinoceptors sensitive to ATP and/or adenosine. High concentrations of ATP also stimulated steroid hormone secretion in vitro, and thus may have a physiological role in this tissue. The presence of ecto-Ca(2+)-ATPases, enzymes able to terminate the effect of ATP, was demonstrated around the nerve profiles at the border of the capsule and zona glomerulosa tissue.
    [Abstract] [Full Text] [Related] [New Search]