These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. Author: Iwao Y, Yasumitsu K, Narihira M, Jiang J, Nagahama Y. Journal: Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124. Abstract: The unfertilized egg of the newt, Cynops pyrrhogaster, has a second meiotic spindle at the animal pole and numerous cortical cytasters. After physiologically polyspermic fertilization, all sperm nuclei incorporated into the egg develop sperm asters, and the cortical cytasters change into bundles of cortical microtubules. The size of the sperm asters in the animal hemisphere is approximately 5.6-fold larger than that in the vegetal hemisphere. Only one sperm nucleus moves toward the center of the animal hemisphere to form a zygote nucleus with the egg nucleus. This movement is inhibited by nocodazole, but not by cytochalasin B. The centrosome in the zygote nucleus divides into two parts to form a bipolar spindle for the first cleavage synchronously with the nuclear cycle, but centrosomes of accessory sperm nuclei in the vegetal hemisphere remained to form monopolar interphase asters and subsequently degenerate around the first cleavage stage. The size of sperm asters in monospermically fertilized Xenopus eggs was approximately 37-fold larger than those in Cynops eggs. Since sperm asters that formed in polyspermically fertilized Xenopus eggs exclude each other, the formation of a zygote nucleus is inhibited. Cynops sperm nuclei form larger asters in Xenopus eggs, whereas Xenopus sperm nuclei form smaller asters in Cynops eggs compared with those in homologous eggs. Since there was no significant difference in the concentration of monomeric tubulin between those eggs, the size of sperm asters is probably regulated by a component(s) in egg cytoplasm. Smaller asters in physiologically polyspermic newt eggs might be useful for selecting only one sperm nucleus to move toward the egg nucleus.[Abstract] [Full Text] [Related] [New Search]