These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulatory role of catecholamines in the transsynaptic expression of c-fos in the rat medial prefrontal cortex induced by disinhibition of the mediodorsal thalamus: a study employing microdialysis and immunohistochemistry. Author: Bubser M, Feenstra MG, Erdtsieck-Ernste EB, Botterblom MH, Van Uum HF, Pool CW. Journal: Brain Res; 1997 Feb 28; 749(2):214-25. PubMed ID: 9138721. Abstract: We studied the interaction of catecholaminergic and thalamic afferents of the medial prefrontal cortex (PFC) by analyzing the effects of catecholamine depletion on thalamus-induced c-fos expression in the PFC of freely moving rats. Thalamic projections to the PFC were pharmacologically activated by perfusing the GABA-A receptor antagonist bicuculline (0.03 mM or 0.1 mM) through a dialysis probe implanted into the mediodorsal thalamic nucleus. Bicuculline perfusion induced Fos-like immunoreactivity in the thalamic projection areas, including the PFC, and in the thalamic nuclei surrounding the dialysis probe. 6-Hydroxydopamine lesions of the ventral tegmental area causing a 70-80% depletion of catecholamines in the PFC did not influence the increase in the number of Fos-like immunoreactive nuclei in the prefrontal cortex in response to thalamic stimulation. However, densitometric image analysis revealed that the intensity of Fos-like immunoreactivity in the PFC of lesioned rats perfused with 0.1 mM bicuculline was higher than in correspondingly treated controls. The behavioral activity to bicuculline perfusion, an increase of non-ambulatory activity (0.03 mM) followed by locomotion and rearing (0.1 mM), was not changed in 6-hydroxydopamine-lesioned rats. It is suggested that the thalamically induced c-fos response is directly mediated by excitatory, presumably glutamatergic, transmission and not indirectly by an activation of catecholaminergic afferents of the PFC. The increase in the intensity of Fos-like immunostaining in strongly stimulated, catecholamine-depleted rats suggests that catecholamines modulate the degree to which thalamic activity can activate the PFC of awake animals.[Abstract] [Full Text] [Related] [New Search]