These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Somatostatin and brain-derived neurotrophic factor mRNA expression in the primate brain: decreased levels of mRNAs during aging. Author: Hayashi M, Yamashita A, Shimizu K. Journal: Brain Res; 1997 Feb 28; 749(2):283-9. PubMed ID: 9138728. Abstract: The expression of the genes for somatostatin (SRIF) and brain-derived neurotrophic factor (BDNF) was investigated in the central nervous system (CNS) of the macaque monkey (Macaca fuscata fuscata). Using Northern blot analysis, one SRIF mRNA transcript, 0.65 kb, and two BDNF mRNA transcripts, 1.6 and 4.0 kb in length, were detected in the monkey brain tissues. During the aging process (2 years, 10 years, and > 30 years), the ratio of SRIF mRNA/glyceraldehyde-3 phosphate dehydrogenase (G3PDH) mRNA significantly decreased (60-70%) in the hippocampus and in several cerebral subdivisions such as frontal cortex, temporal cortex, motor cortex, somatosensory cortex and visual cortex. BDNF mRNA was expressed in the various cerebral subdivisions and in the hippocampus. During the aging process, the gene expression of BDNF declined (20-50% for the 4.0 kb transcript, and 40-70% for the 1.6 kb transcript) in the various cerebral subdivisions. In the hippocampus, the level of the 1.6 kb mRNA at > 30 years old declined to 60% of the level at 2 years old, while the 4.0 kb mRNA did not change significantly during the aging process. Recent studies have shown that BDNF enhances the expression of SRIF mRNA in the rodent cerebral cortex (Nawa, H. et al., J. Neurochem., 60 (1993) 772-775; Nawa, H. et al., J. Neurosci., 14 (1994) 3751-3765). These studies and our present results suggest that the decrease in gene expression for a neurotrophic molecule, such as BDNF, might cause the levels of SRIF mRNA to decline in the primate brain during the aging process.[Abstract] [Full Text] [Related] [New Search]