These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: pH-induced proton permeability changes of plasma membrane vesicles. Author: Miedema H, Staal M, Prins HB. Journal: J Membr Biol; 1996 Jul; 152(2):159-67. PubMed ID: 9139126. Abstract: In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied DeltapH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero DeltapH, PH+ increased from 65 x 10(-8) at pH 8.5 to 10(-1) m/sec at pH 11 and the conductance from 13 x 10(-6) to 30 x 10(-4) S/m2. At a constant pHi of 8 and a pHo going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 x 10(-6) m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed.[Abstract] [Full Text] [Related] [New Search]