These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An immunocytochemical study of a G-protein-gated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon.
    Author: Adelbrecht C, Murer MG, Lauritzen I, Lesage F, Ladzunski M, Agid Y, Raisman-Vozari R.
    Journal: Neuroreport; 1997 Mar 03; 8(4):969-74. PubMed ID: 9141074.
    Abstract:
    It has been suggested that a mutation in a G-protein-gated inward rectifier K+ channel (GIRK2) is responsible for inducing cell death in the cerebellum of homozygous weaver (wv/wv) mutant mice. These mice also display a progressive, massive loss of mesencephalic dopaminergic neurones. Using an immunocytochemical method, we detected GIRK2-positive cell bodies and fibres in the substantia nigra pars compacta (SNC) and the ventral tegmental area (VTA) of control (+/+) mice. Cell counts of both GIRK2- and tyrosine hydroxylase (TH)-positive neurones demonstrated a marked loss of SNC cell bodies, especially in 12-month-old (12M) wv/wv mice. A considerable proportion of GIRK2-positive cell bodies were preserved, however. In addition, no loss of GIRK2-positive neurones was observed in the VTA of 12M wv/wv mice, despite of a significant reduction in TH-positive cell bodies. These results suggest that expression of the mutated channel is not a sufficient condition to induce cell death in the ventral mesencephalon of the wv/wv mice.
    [Abstract] [Full Text] [Related] [New Search]