These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphatidylinositol 3-kinase and dynamics of insulin resistance in denervated slow and fast muscles in vivo.
    Author: Elmendorf JS, Damrau-Abney A, Smith TR, David TS, Turinsky J.
    Journal: Am J Physiol; 1997 Apr; 272(4 Pt 1):E661-70. PubMed ID: 9142889.
    Abstract:
    Regulation of glucose uptake by 1- and 3-day denervated soleus (slow-twitch) and plantaris (fast-twitch) muscles in vivo was investigated. One day after denervation, soleus and plantaris muscles exhibited 62 and 65% decreases in insulin-stimulated 2-deoxyglucose uptake, respectively, compared with corresponding control muscles. At this interval, denervated muscles showed no alterations in insulin receptor binding and activity, amount and activity of phosphatidylinositol 3-kinase, and amounts of GLUT-1 and GLUT-4. Three days after denervation, there was no increase in 2-deoxyglucose uptake in response to insulin in soleus muscle, whereas plantaris muscle exhibited a 158% increase in basal and an almost normal absolute increment in insulin-stimulated uptake. Despite these differences, denervated soleus and plantaris muscles exhibited comparable decreases in insulin-stimulated activities of the insulin receptor (approximately 40%) and phosphatidylinositol 3-kinase (approximately 50%) and a pronounced decrease in GLUT-4. An increase in GLUT-1 in plantaris, but not soleus, muscle 3 days after denervation is consistent with augmented basal 2-deoxyglucose uptake in plantaris muscle at this interval. These results demonstrate that, in denervated muscles, there is a clear dissociation between insulin-stimulated 2-deoxyglucose uptake and upstream events involved in insulin-stimulated glucose uptake.
    [Abstract] [Full Text] [Related] [New Search]