These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and characterization of a novel A-kinase-anchoring protein (AKAP120) from rabbit gastric parietal cells. Author: Dransfield DT, Yeh JL, Bradford AJ, Goldenring JR. Journal: Biochem J; 1997 Mar 15; 322 ( Pt 3)(Pt 3):801-8. PubMed ID: 9148752. Abstract: The type-II cAMP-dependent protein kinase (A-Kinase) partitions primarily into the particulate fraction in gastric parietal cells. Localization of this kinase to particular subcellular domains is mediated through the binding of the regulatory subunit (RII) dimer to A-Kinase-anchoring proteins (AKAPs). Using a [32P]RII overlay assay, we have screened a rabbit gastric parietal cell cDNA library and have isolated a single RII-binding protein clone. Sequence analysis revealed an open reading frame coding for 1022 amino acids (AKAP120). Recombinant fragments of the full-length clone were prepared and the RII-binding region mapped to an area between amino acids 489 and 549. This area contained a putative alpha-helical RII-binding region between amino acids 503 and 516. Incubation of [32P]RII with a synthetic peptide of AKAP120-(489-522) completely inhibited the binding of [32P]RII to the recombinant AKAP120 fragments that demonstrated RII binding. In vitro RII-binding affinity studies indicated a high-affinity interaction between AKAP120 and RII with a Kapp between 50 and 120 nM for the three recombinant fragments that bound [32P]RII. RNase-protection analysis revealed that AKAP120 is a widely distributed protein, with the highest levels of mRNA observed in gastric fundus. The presence of this novel high-affinity AKAP in gastric parietal cells suggests that it may regulate RII subcellular sequestration in this cell type.[Abstract] [Full Text] [Related] [New Search]