These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cooperative effect of calcium binding to adjacent troponin molecules on the thin filament-myosin subfragment 1 MgATPase rate. Author: Butters CA, Tobacman JB, Tobacman LS. Journal: J Biol Chem; 1997 May 16; 272(20):13196-202. PubMed ID: 9148936. Abstract: The myosin subfragment 1 (S1) MgATPase rate was measured using thin filaments with known extents of Ca2+ binding controlled by varying the ratio of native cardiac troponin versus an inhibitory troponin with a mutation in the sole regulatory Ca2+ binding site of troponin C. Fractional MgATPase activation was less than the fraction of troponins that bound Ca2+, implying a cooperative effect of bound Ca2+ on cross-bridge cycling. Addition of phalloidin did not alter cooperative effects between bound Ca2+ molecules in the presence or absence of myosin S1. When the myosin S1 concentration was raised sufficiently to introduce cooperative myosin-myosin effects, lower Ca2+ concentrations were needed to activate the MgATPase rate. MgATPase activation remained less than Ca2+ binding, implying a true, not just an apparent, increase in Ca2+ affinity. MgATPase activation by Ca2+ was more cooperative than could be explained by cooperativeness of overall Ca2+ binding, the discrepancy between Ca2+ binding and MgATPase activation, or interactions between myosins. The results suggest the thin filament-myosin S1 MgATPase cycle requires calcium binding to adjacent troponin molecules and that this binding is cooperatively promoted by a single cycling cross-bridge. This mechanism is a potential explanation for Ca2+-mediated regulation of cross-bridge kinetics in muscle fibers.[Abstract] [Full Text] [Related] [New Search]