These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilized pH gradient two-dimensional gel electrophoresis and mass spectrometric identification of cytokine-regulated proteins in ME-180 cervical carcinoma cells. Author: Matsui NM, Smith DM, Clauser KR, Fichmann J, Andrews LE, Sullivan CM, Burlingame AL, Epstein LB. Journal: Electrophoresis; 1997; 18(3-4):409-17. PubMed ID: 9150919. Abstract: Two-dimensional (2-D) polyacrylamide gel electrophoresis combined with mass spectrometry is a powerful combination of technologies that allows high resolution separation of proteins and their rapid identification. Immobilized pH gradient (IPG) first-dimensional gels have several advantages over carrier ampholyte isoelectric focusing, including a high degree of reproducibility, good protein spot resolution, and a selection of pH range. Here we demonstrate the utility and efficacy of combining IPG 2-D gel electrophoresis with mass spectrometry to identify interferon-gamma- (IFN) and tumor necrosis factor (TNF)-regulated proteins in ME-180 cervical carcinoma cells. Three cytokine-regulated proteins have been identified, using imidazole-zinc-stained preparative IPG 2-D gels and in-gel tryptic digestion followed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry for determination of peptide masses and sequences: 1) triosephosphate isomerase, a glycolytic pathway enzyme, 2) proteasome subunit C3, which is important in protein degradation, and 3) Ran, a GTP-binding protein important in cell cycle regulation, protein import into the nucleus, and RNA export from the nucleus.[Abstract] [Full Text] [Related] [New Search]