These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solution structure of synthetic peptide inhibitor and substrate of cAMP-dependent protein kinase. A study by 2D H NMR and molecular dynamics.
    Author: Padilla A, Hauer JA, Tsigelny I, Parello J, Taylor SS.
    Journal: J Pept Res; 1997 Mar; 49(3):210-20. PubMed ID: 9151254.
    Abstract:
    Peptides derived from the inhibitor of cAMP-dependent protein kinase. PKI, have been studied by 2D 1H NMR techniques. These include the inhibitor PKI(6-22), the substrate [Ala20-Ser21]PKI(5-24), and a phosphorylated form of the latter [Ala20-Ser21P]PKI(5-24). A homologous fold was found in the three peptides which consisted of an N-terminal segment in helical conformation to residue 13 and a C-terminal segment poorly defined conformationally. A parallel study was carried out by molecular dynamics (MD) for the inhibitor peptide PKI(5-24). The N-terminal helix, as observed in the crystal structure of the catalytic subunit-PKI(5-24) complex, was conserved in the MD simulations with the enzyme-free inhibitor. Similarly the Gly14-Gly17 turn was apparent in all MD structures, whereas the C-terminal region, residues 18-24, was directed towards the N-terminal helix in contrast to the extended conformation of this segment pointing away from the N-terminal helix in the crystal structure. This is primarily due to ionic interaction between Asp9 and Arg15. Indeed, a detailed analysis of the NOE contacts by NOESY at low temperature (2 degrees C) shows the occurrence of pH-dependent contacts with Phe10. We conclude that the binding of short inhibitors, such as PKI(5-24), to the enzyme involves a conformational rearrangement of the C-terminal region. The substrate [Ala20-Ser21]PKI(5-24) and the product [Ala20-Ser21P]PKI(5-24), give very similar structures with local rearrangements involving some of the side chains.
    [Abstract] [Full Text] [Related] [New Search]