These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. Author: Andersson AM, Melin L, Bean A, Pettersson RF. Journal: J Virol; 1997 Jun; 71(6):4717-27. PubMed ID: 9151865. Abstract: Members of the Bunyaviridae family mature by a budding process in the Golgi complex. The site of maturation is thought to be largely determined by the accumulation of the two spike glycoproteins, G1 and G2, in this organelle. Here we show that the signal for localizing the Uukuniemi virus (a phlebovirus) spike protein complex to the Golgi complex resides in the cytoplasmic tail of G1. We constructed chimeric proteins in which the ectodomain, transmembrane domain (TMD), and cytoplasmic tail (CT) of Uukuniemi virus G1 were exchanged with the corresponding domains of either vesicular stomatitis virus G protein (VSV G), chicken lysozyme, or CD4, all proteins readily transported to the plasma membrane. The chimeras were expressed in HeLa or BHK-21 cells by using either the T7 RNA polymerase-driven vaccinia virus system or the Semliki Forest virus system. The fate of the chimeric proteins was monitored by indirect immunofluorescence, and their localizations were compared by double labeling with markers specific for the Golgi complex. The results showed that the ectodomain and TMD (including the 10 flanking residues on either side of the membrane) of G1 played no apparent role in targeting chimeric proteins to the Golgi complex. Instead, all chimeras containing the CT of G1 were efficiently targeted to the Golgi complex and colocalized with mannosidase II, a Golgi-specific enzyme. Conversely, replacing the CT of G1 with that from VSV G resulted in the efficient transport of the chimeric protein to the cell surface. Progressive deletions of the G1 tail suggested that the Golgi retention signal maps to a region encompassing approximately residues 10 to 50, counting from the proposed border between the TMD and the tail. Both G1 and G2 were found to be acylated, as shown by incorporation of [3H]palmitate into the viral proteins. By mutational analyses of CD4-G1 chimeras, the sites for palmitylation were mapped to two closely spaced cysteine residues in the G1 tail. Changing either or both of these cysteines to alanine had no effect on the targeting of the chimeric protein to the Golgi complex.[Abstract] [Full Text] [Related] [New Search]