These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical mechanisms of interferon modulation of 5-fluorouracil activity in colon cancer cells. Author: van der Wilt CL, Smid K, Aherne GW, Noordhuis P, Peters GJ. Journal: Eur J Cancer; 1997 Mar; 33(3):471-8. PubMed ID: 9155534. Abstract: The antiproliferative effect of 5-fluorouracil (5-FU) in colon cancer can be enhanced by interferons (IFN-alpha and IFN-gamma). The mechanisms by which IFNs modulate 5-FU activity are not completely elucidated. IFN-alpha may elevate the levels of the active 5-FU metabolite 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) in the cell, possibly leading to increased inhibition of the target enzyme thymidylate synthase (TS), which might enhance DNA damage. It has been shown that IFN-gamma can prevent 5-FU induced overexpression of TS. We studied IFN modulation in three colon cancer cell lines (SW948, WiDr, human; C26-10, murine) and the sublines WiDr/F and C26-10/F, which were adapted to low folate levels. A 1.5-fold increase in 5-FU sensitivity was observed in C26-10 and C26-10/F (by murine IFN-alpha, beta); in SW948, WiDr and WiDr/F (by human IFN-gamma) and in SW948 and WiDr/ F (by human IFN-alpha). In none of the cell lines did human IFN-alpha, IFN-gamma or murine IFN-alpha, beta increase FdUMP levels after exposure to 5-FU. TS activity, indirectly measured by incorporation of [6-3H]-deoxyuridine into DNA, was inhibited by 5-FU, but the IFNs did not enhance inhibition. DNA damage was measured as a drug-induced decrease of double-stranded (dss) DNA compared to control cells. After 5-FU exposure, dss DNA decreased to 60-75% in WiDr, WiDr/F and SW948 cells. Human IFN-alpha alone caused minimal DNA damage (95% dss DNA), but increased 5-FU-induced effects to 35-50% dss DNA. IFN-gamma did not cause DNA damage and did not enhance 5-FU-mediated DNA damage. Expression of TS protein, analysed by ELISA, was increased after 5-FU exposure of SW948 cells, but this increase was not affected by addition of either IFN-alpha or IFN-gamma. It is concluded that one of the mechanisms involved in modulation of 5-FU activity is the effect of IFN-alpha on 5-FU-mediated DNA damage, but for IFN-gamma no mechanism of action was found.[Abstract] [Full Text] [Related] [New Search]