These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA damage-associated dysregulation of the cell cycle and apoptosis control in cells with germ-line p53 mutation. Author: Goi K, Takagi M, Iwata S, Delia D, Asada M, Donghi R, Tsunematsu Y, Nakazawa S, Yamamoto H, Yokota J, Tamura K, Saeki Y, Utsunomiya J, Takahashi T, Ueda R, Ishioka C, Eguchi M, Kamata N, Mizutani S. Journal: Cancer Res; 1997 May 15; 57(10):1895-902. PubMed ID: 9157982. Abstract: Lymphoblastoid cell lines (LCLs) with heterozygous p53 mutations at residues 286A, 133R, 282W, 132E, and 213ter were established from five independent Li-Fraumeni syndrome families. When cell cycle regulation in response to gamma-irradiation was studied, these LCLs showed an abnormal G1 checkpoint associated with defective inhibition of cyclin E/cyclin-dependent kinase 2 activity in all cases except for 282W LCL, which showed a normal G1 checkpoint. On the other hand, the control of S-phase-G2 as determined by cyclin A/cyclin-dependent kinase 2 activity was defective in all these LCLs. The mitotic checkpoint was also defective in the two LCLs analyzed as either competent or incompetent for G1 arrest. When radiation-induced apoptosis, which requires wild-type p53 function under optimal conditions, was studied, all of these LCLs showed significant failure compared to normal LCLs. These findings indicate that although p53-dependent transactivation and G1-S-phase cell cycle control are variably dysregulated, the induction of apoptosis and control of the cell cycle at S-phase-G2 and the mitotic checkpoint in response to DNA-damaging agents are consistently dysregulated in heterozygous mutant LCLs. This suggests that these dysfunctions underlie, at least in part, the susceptibility of Li-Fraumeni syndrome families to cancer. Furthermore, the approach presented is a potentially useful method for studying individual carriers of different germ-line p53 mutations and different biological features.[Abstract] [Full Text] [Related] [New Search]