These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Putative oxidative metabolites of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline of potential relevance to the addictive and neurodegenerative consequences of ethanol abuse.
    Author: Wrona MZ, Waskiewicz J, Han QP, Han J, Li H, Dryhurst G.
    Journal: Alcohol; 1997; 14(3):213-23. PubMed ID: 9160798.
    Abstract:
    Ethanol is metabolized in the brain by catalase/H2O2 to yield acetaldehyde and by an ethanol-inducible form of cytochrome P450 (P450 IIE1) in a reaction that yields oxygen radicals. Within the cytoplasm of serotonergic axon terminals these metabolic pathways together provide conditions for the endogenous synthesis of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline (1), by reaction of acetaldehyde with unbound 5-hydroxytryptamine (5-HT), and for the oxygen radical-mediated oxidation of this alkaloid. The major initial product of the hydroxyl radical (HO.)-mediated oxidation of 1 in the presence of free glutathione (GSH), a constituent of nerve terminals and axons, is 8-S-glutathionyl-1-methyl-1,2,3,4-tetrahydro-beta-carboline-5,6-dione (6). When administered into the brains of mice, 6 is a potent toxin (LD50 = 2.9 microg) and evokes episodes of hyperactivity and tremor. Compound 6 binds at the GABA(B) receptor and evokes elevated release and turnover of several neurotransmitters. Furthermore, the GABA(B) receptor antagonist phaclofen attenuates the behavioral response caused by intracerebral administration of 6. These observations suggest that 6 might be an inverse agonist at the GABA(B) receptor site. Accordingly, it is speculated that ethanol drinking might potentiate formation of 6 that contributes to elevated release of several neurotransmitters including dopamine (DA) and endogenous opioids in regions of the brain innervated by serotonergic axon terminals. Subsequent interactions of DA and opioids with their receptors might be related to the initial development of dependence on ethanol. Redox cycling of 6 (and of several putative secondary metabolites) in the presence of intraneuronal antioxidants and molecular oxygen to produce elevated fluxes of cytotoxic reduced oxygen species might contribute to the degeneration of serotonergic pathways. Low levels of 5-HT in certain brain regions of the rat predisposes these animals to drink or augments drinking. Accordingly, 6, formed as a result of ethanol metabolism in the cytoplasm of certain serotonergic axon terminals, might contribute to the initial development of dependence on ethanol, by mediating DA and opioid release, and long-term preference and addiction to the fluid as a result of the progressive degeneration of these neurons.
    [Abstract] [Full Text] [Related] [New Search]