These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid kinetics and inward rectification of miniature EPSCs in layer I neurons of rat neocortex. Author: Zhou FM, Hablitz JJ. Journal: J Neurophysiol; 1997 May; 77(5):2416-26. PubMed ID: 9163367. Abstract: With the use of the whole cell patch-clamp technique combined with visualization of neurons in brain slices, we studied the properties of miniature excitatory postsynaptic currents (mEPSCs) in rat neocortical layer I neurons. At holding potentials (-50 to -70 mV) near the resting membrane potential (RMP), mEPSCs had amplitudes of 5-100 pA and were mediated mostly by alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA) receptors. Amplitude histograms were skewed toward large events. An N-methyl-D-aspartate (NMDA) component was revealed by depolarization to -30 mV or by the use of a Mg2+-free bathing solution. At RMP, averaged AMPA mEPSCs had a 10-90% rise time of approximately 0.3 ms (uncorrected for instrument filtering). The decay of averaged mEPSCs was best fit by double-exponential functions in most cases. The fast, dominating component had a decay time constant of approximately 1.2 ms and comprised approximately 80% of the total amplitude. A small slow component had a decay time constant of approximately 4 ms. Positive correlations were found between rise and decay times of both individual and averaged mEPSCs, indicative of dendritic filtering. Some large-amplitude mEPSCs and spontaneous EPSCs (recorded in the absence of tetrodotoxin) had slower kinetics, suggesting a role of asynchronous transmitter release in shaping EPSCs. The amplitudes of mEPSCs were much smaller at +60 mV than at -60 mV, indicating that synaptic AMPA-receptor-mediated currents were inwardly rectifying. These results suggest that neocortical layer I neurons receive both NMDA- and AMPA-receptor-mediated synaptic inputs. The rapid decay of EPSCs appears to be largely determined by AMPA receptor deactivation. The observed rectification of synaptic responses suggests that synaptic AMPA receptors in layer I neurons may lack GluR-2 subunits and may be Ca2+ permeable.[Abstract] [Full Text] [Related] [New Search]