These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Author: Brunk DK, Hammer DA. Journal: Biophys J; 1997 Jun; 72(6):2820-33. PubMed ID: 9168056. Abstract: Rolling of neutrophils over stimulated endothelial cells is a prerequisite to firm attachment and subsequent transendothelial migration during the inflammatory response. The selectin family of adhesion molecules are thought to mediate rolling by binding counter-receptors that present carbohydrates, such as sialyl Lewis(x) (sLe[x]). Recently we described a cell-free system for rolling using sLe(x)-coated microspheres and E-selectin molecules on inert substrates. We showed that sLe(x)-coated microspheres rolled over E-selectin-IgG chimera substrates with dynamics that are similar to those of leukocytes rolling over stimulated endothelium. In this paper we provide a thorough quantitative description of the dynamics of adhesion for this system. We find that particle rolling velocity increases with increasing wall shear stress and decreases with increasing E-selectin or sLe(x) surface densities. Large changes in the average rolling velocity can occur with small changes in sLe(x) or E-selectin density; however, rolling velocity is more sensitive to E-selectin surface coverage than to the number of sLe(x) molecules on the microspheres. Aided by dimensional analysis, we show that decreasing the wall shear stress or increasing either receptor (E-selectin) or ligand (sLe[x]) surface coverage results in an equivalent decrease in particle rolling velocity. In addition, we find that different Lewis carbohydrates are more effective in mediating rolling on E-selectin, with effectiveness following the trend sialyl Lewis(a) > sialyl Lewis(x) >> sulfated Lewis(x) >> Lewis(x). Rolling velocity fluctuated with time for all carbohydrate-selectin pairs tested, and the magnitude of the velocity fluctuations was linearly proportional to the mean rolling velocity for all combinations of E-selectin site density, sLe(x) site density, wall shear stress, and carbohydrate chemistry tested.[Abstract] [Full Text] [Related] [New Search]