These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 3'-phosphodiesterase activity of human apurinic/apyrimidinic endonuclease at DNA double-strand break ends. Author: Suh D, Wilson DM, Povirk LF. Journal: Nucleic Acids Res; 1997 Jun 15; 25(12):2495-500. PubMed ID: 9171104. Abstract: In order to assess the possible role of human apurinic/apyrimidinic endonuclease (Ape) in double-strand break repair, the substrate specificity of this enzyme was investigated using short DNA duplexes and partial duplexes, each having a single 3'-phosphoglycolate terminus. Phosphoglycolate removal by Ape was detected as a shift in mobility of 5'-end-labeled DNA strands on polyacrylamide sequencing gels, and was quantified by phosphorimaging. Recombinant Ape efficiently removed phosphoglycolates from the 3'-terminus of an internal 1 base gap in a 38mer duplex, but acted more slowly on 3'-phosphoglycolates at a 19 base-recessed 3'-terminus, at an internal nick with no missing bases, and at a double-strand break end with either blunt or 2 base-recessed 3'-termini. There was no detectable activity of Ape toward 3'-phosphoglycolates on 1 or 2 base protruding single-stranded 3'-overhangs. The results suggest that both a single-base internal gap, and duplex DNA on each side of the gap are important binding/recognition determinants for Ape. While Ape may play a role in repair of terminally blocked double-strand breaks, there must also be additional factors involved in removal of at least some damaged 3'-termini, particularly those on 3'-overhangs.[Abstract] [Full Text] [Related] [New Search]