These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular cloning and analysis of the ptsHI operon in Lactobacillus sake. Author: Stentz R, Lauret R, Ehrlich SD, Morel-Deville F, Zagorec M. Journal: Appl Environ Microbiol; 1997 Jun; 63(6):2111-6. PubMed ID: 9172326. Abstract: The ptsH and ptsI genes of Lactobacillus sake, encoding the general enzymes of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS), were cloned and sequenced. HPr (88 amino acids), encoded by ptsH, and enzyme I (574 amino acids), encoded by ptsI, are homologous to the corresponding known enzymes of other bacteria. Nucleotide sequence and mRNA analysis showed that the two genes are cotranscribed in a large transcript encoding both HPr and enzyme I. The transcription of ptsHI was shown to be independent of the carbon source. Four ptsI mutants were constructed by single-crossover recombination. For all mutants, growth on PTS carbohydrates was abolished. Surprisingly, the growth rates of mutants on ribose and arabinose, two carbohydrates which are not transported by the PTS, were accelerated. This unexpected phenotype suggests that the PTS negatively controls ribose and arabinose utilization in L. sake by a mechanism different from the regulation involving HPr described for other gram-positive bacteria.[Abstract] [Full Text] [Related] [New Search]