These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog. Author: Holtzman D, Meyers R, O'Gorman E, Khait I, Wallimann T, Allred E, Jensen F. Journal: Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148. Abstract: Mitochondrial and cytosolic creatine kinase (CK) isozymes are active in cells with high and variable ATP metabolic rates. beta-Guanidinopropionic acid (GPA), a competitive inhibitor of creatine transport, was used to study the hypothesis that the creatine-CK-phosphocreatine (PCr) system is important in regulating brain ATP metabolism. The CK-catalyzed reaction rate and reactant concentrations were measured in vivo with 31P nuclear magnetic resonance spectroscopy during energy deficit (hypoxia) or high-energy turnover (seizures) states in urethane-anesthetized mice fed GPA, creatine, or standard chow (controls). Brain phosphagen (i.e., cellular energy reserves) or PCr plus phosphorylated GPA (GPAP) concentrations were equal. The phosphagen-to-NTP ratio was lower than in controls. In vivo CK reaction rate decreased fourfold, whereas ex vivo CK activity that was biochemically measured was doubled. During seizures, CK-catalyzed fluxes increased only in GPA-fed mice. Phosphagen increased in GPA-fed mice, whereas PCr decreased in controls. Survival was higher and brain phosphagen and ATP losses were less for hypoxic GPA-fed mice than for controls. In contrast to mice fed GPA, hypoxic survival and CK reactant concentrations during hypoxia and seizures were the same in creatine-fed mice and controls. Thus GPA, GPAP, or adaptive changes in ATP metabolism stabilize brain ATP and enhance survival during hypoxia in mice.[Abstract] [Full Text] [Related] [New Search]