These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evaluation of the developmental toxicity of 4-bromobenzene using frog embryo teratogenesis assay--Xenopus: possible mechanisms of action.
    Author: Fort DJ, Propst TL, Stover EL.
    Journal: Teratog Carcinog Mutagen; 1996; 16(6):307-15. PubMed ID: 9178453.
    Abstract:
    Potential mechanisms of 4-bromobenzene-induced developmental toxicity were evaluated using frog embryo teratogenesis assay-Xenopus (FETAX). Early X, laevis embryos were exposed to 4-bromobenzene in two separate definitive concentration-response tests with and without an exogenous metabolic activation system (MAS) or selectively inhibited MAS. The MAS was treated with carbon monoxide (CO) to modulate P-450 activity, cyclohexene oxide (CHO) to modulate epoxide hydrolase activity, and diethyl maleate (DM) to modulate glutathione conjugation. Addition of the intact MAS, and particularly the CHO- and DM-inhibited MASs, dramatically increased the embryo lethal potential of 4-bromobenzene. Addition of the CO-inhibited MAS decreased the developmental toxicity of activated 4-bromobenzene to levels approximating that of the parent compound. Results from these studies suggested that a highly toxic arene oxide intermediate of 4-bromobenzene formed as the result of mixed function oxidase (MFO)-mediated metabolism may play an important role in the development toxicity of 4-bromobenzene in vitro. Furthermore, both epoxide hydrolase and glutathione conjugation appeared to be responsible for activated 4-bromobenzene detoxification.
    [Abstract] [Full Text] [Related] [New Search]