These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent: quantitative aspects of the phenomenon.
    Author: Blomberg A.
    Journal: Yeast; 1997 May; 13(6):529-39. PubMed ID: 9178504.
    Abstract:
    Osmotic hypersensitivity is manifested as cellular death at magnitudes of osmotic stress that can support growth. Cellular capacity for survival when plated onto high NaCl media was examined for a number of laboratory and industrial strains of Saccharomyces cerevisiae. During respiro-fermentative growth in rich medium with glucose as energy and carbon source, the hypersensitivity phenomenon was fairly strain invariant with a threshold value of about 1 M-NaCl; most strains fell within a 300 mM range in LD10 values (lethal dose yielding 10% survival). Furthermore, all but one of the strains displayed similar differential death responses above the threshold value, i.e. ten-fold decreased viability for every 250 mM increase in salinity. Addition of small amounts of salt to the growth medium drastically improved tolerance and shifted the hypersensitivity threshold to higher NaCl concentrations. This salt-instigated tolerance could partly be reversed by washing in water. The washing procedure depleted cells of the glycerol that they had accumulated under saline growth, and the contribution from glycerol to the improved tolerance was about 50% in the two strains examined. Growth on derepressing carbon sources like galactose, ethanol or glycerol gave strain-dependent responses. The laboratory strain X2180-1A drastically improved tolerance while the bakers' yeast strain Y41 did so only marginally. It was concluded that all strains of S. cerevisiae display the osmotic hypersensitivity phenomenon in qualitative terms while the quantitative values differ. It was also proposed that growth rate does not dictate the level of osmotic hypersensitivity of S. cerevisiae.
    [Abstract] [Full Text] [Related] [New Search]