These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitric oxide production during Eimeria tenella infections in chickens.
    Author: Allen PC.
    Journal: Poult Sci; 1997 Jun; 76(6):810-3. PubMed ID: 9181612.
    Abstract:
    The objective of this study was to gather evidence for production of nitric oxide (NO) during a primary infection with the protozoan parasite Eimeria tenella, which carries out its life cycle in the ceca of chickens. Relationships of plasma levels of NO2(-)+NO3-, stable metabolites of NO, with parasite dose and with time after infection were examined, as well as effects of administration of aminoguanidine, an inhibitor of induced nitric oxide synthase (iNOS). Inoculation with 5 x 10(4) and 1 x 10(6) but not 1 x 10(3) oocysts per chick caused significant (P < or = 0.05) increases in micromolar concentrations of plasma NO3(-)+NO3- when measured at 7 d postinoculation (PI). In chickens inoculated with 5 x 10(4) oocysts, significant (P < or = 0.05) increases in plasma NO2(-)+NO3- were seen at 5 and 7 but not 3 d PI. Daily intraperitoneal administration of 1.25 mg per chick aminoguanidine during the period of infection did not lower the increases in plasma NO2(-)+NO3- seen at 5 and 7 d PI, and did not affect the degree of colonization of the cecal tissue by the parasite. However, administration of aminoguanidine did alter the gross appearance of the ceca, which were less swollen and filled with blood at 5 and 7 d PI as compared with ceca from untreated chickens. Hemorrhage is a major pathological manifestation of E. tenella infections, associated with the disruption of the cecal mucosa by the developing parasite. The results of this experiment are consistent with the hypothesis that an aminoguanidine-inhibitable NO synthase, perhaps in the vascular endothelium of the cecal blood vessels, may contribute to hemorrhage by causing vasodilation.
    [Abstract] [Full Text] [Related] [New Search]