These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Entrapment of 6-thiophosphoryl-IMP in the active site of crystalline adenylosuccinate synthetase from Escherichia coli. Author: Poland BW, Bruns C, Fromm HJ, Honzatko RB. Journal: J Biol Chem; 1997 Jun 13; 272(24):15200-5. PubMed ID: 9182542. Abstract: Crystal structures of adenylosuccinate synthetase from Escherichia coli complexed with Mg2+, 6-thiophosphoryl-IMP, GDP, and hadacidin at 298 and 100 K have been refined to R-factors of 0.171 and 0.206 against data to 2.8 and 2.5 A resolution, respectively. Interactions of GDP, Mg2+ and hadacidin are similar to those observed for the same ligands in the complex of IMP, GDP, NO3-, Mg2+ and hadacidin (Poland, B. W., Fromm, H. J. & Honzatko, R. B. (1996). J. Mol. Biol. 264, 1013-1027). Although crystals were grown from solutions containing 6-mercapto-IMP and GTP, the electron density at the active site is consistent with 6-thiophosphoryl-IMP and GDP. Asp-13 and Gln-224 probably work in concert to stabilize the 6-thioanion of 6-mercapto-IMP, which in turn is the nucleophile in the displacement of GDP from the gamma-phosphate of GTP. Once formed, 6-thiophosphoryl-IMP is stable in the active site of the enzyme under the conditions of the structural investigation. The direct observation of 6-thiophosphoryl-IMP in the active site is consistent with the putative generation of 6-phosphoryl-IMP along the reaction pathway of the synthetase.[Abstract] [Full Text] [Related] [New Search]