These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative effects of age and chronic low-level lead exposure on calcium mobilization from intracellular calcium stores in brain samples obtained from the neonatal and the adult rats.
    Author: Singh AK, Jiang Y.
    Journal: Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1997 May; 117(1):89-98. PubMed ID: 9185331.
    Abstract:
    The effects of age and chronic low-level lead exposure were studied on (a) [3H]IP3 and [3H]Ry binding to their respective receptors in brain membranes and (b) Ca2+ release from internal Ca2+ stores in brain synaptosomes obtained from the neonatal and adult rats. [3H]IP3 and [3H]Ry binding sites in the control-adult membranes were greater than those in the control-neonatal membranes. [3H]IP3 bound to a single high-affinity site, IP3-R. Ca2+ decreased [3H]IP3 binding to its receptor. [3H]Ry bound to at least four subspecies of Ry-Rs. KCl and IP3 increased, but Ca2+ caused a biphasic affect on [3H]Ry binding in brain membranes. IP1 and caffeine both caused greater increase in [Ca2+]I in the adult synaptosomes than the neonatal synaptosomes. IP4 redistributed Ca2+ from the caffeine-sensitive pool to the IP3-sensitive pool. IP3 increased the caffeine-induced mobilization of Ca2+ in synaptosomes. Chronic low-level lead exposure decreased the binding of [3H]IP3 to its receptors in membranes, attenuated the IP3-induced Ca2+ mobilization in synaptosomes, abolished the IP4-induced redistribution of Ca2+ from Ry sensitive Ca2+ store to IP3-sensitive Ca2+ store, and attenuated the effects of IP1 on [Ca2+]I in caffeine stimulated synaptosomes. Lead exposure, however, did not affect [3H]Ry binding to Ry-R in membranes or the caffeine-induced increase in [Ca2+]I in synaptosomes. Chronic lead exposure protected IP3-R against Ca(2+)-induced inhibition in membranes. This protection was greater in the neonatal samples than the adult samples. This suggests that chronic low-level lead exposure down-regulated the IP3-induced Ca2+ mobilization in synaptosomes without effecting the caffeine-induced Ca2+ mobilization.
    [Abstract] [Full Text] [Related] [New Search]