These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast.
    Author: Polo S, Ketner G, Levis R, Falgout B.
    Journal: J Virol; 1997 Jul; 71(7):5366-74. PubMed ID: 9188607.
    Abstract:
    The dengue virus type 2 genomic RNA was amplified by reverse transcription-PCR and cloned as four cDNA fragments. We could not assemble these four fragments into full-length cDNA in Escherichia coli. The full-length dengue virus cDNA was constructed by homologous recombination in yeast, either as part of a yeast artificial chromosome or in a yeast-E. coli shuttle vector. Full-length cDNA clones were propagated once in E. coli to prepare useful quantities of DNA. In vitro transcription of these clones produced full-length RNA transcripts. Introduction of these transcripts into LLC-MK2 cells produced typical dengue infection, as judged by cytopathic effects and indirect immunofluorescence. Infectivity was sensitive to RNase digestion and was dependent on the presence of cap analog in the transcription reaction mixture. Virus in the medium was passaged on C6-36 cells to produce stocks, and these stocks had titers and plaque morphologies similar to those of the parental dengue virus type 2. Intracellular dengue virus RNA from cells infected with transcript-derived virus contained an introduced BstEII site, proving that infectivity was derived from RNA transcripts and not from contamination with parental dengue virus. Transcript-derived virus was comparable to dengue virus type 2 for growth and protein expression in tissue culture cells. Sequence analysis of the dengue virus cDNA in one full-length clone revealed only one unexpected silent mutation. By using yeast technology, it will be easy to introduce specific mutations into the dengue virus cDNA, allowing analysis of the virus phenotype in cells transfected with mutant transcripts.
    [Abstract] [Full Text] [Related] [New Search]