These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs.
    Author: Tall E, Dormán G, Garcia P, Runnels L, Shah S, Chen J, Profit A, Gu QM, Chaudhary A, Prestwich GD, Rebecchi MJ.
    Journal: Biochemistry; 1997 Jun 10; 36(23):7239-48. PubMed ID: 9188725.
    Abstract:
    We tested for the presence of high-affinity phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and PI(3,4,5)P3 binding sites in four phospholipase C (PLC) isozymes (delta1, beta1, beta2, and beta3), by probing these proteins with analogs of inositol phosphates, D-Ins(1,4,5)P3, D-Ins(1,3,4,5)P4, and InsP6, and polyphosphoinositides PI(4,5)P2 and PI(3,4,5)P3, which contain a photoactivatable benzoyldihydrocinnamide moiety. Only PLC-delta1 was specifically radiolabeled. More than 90% of the label was found in tryptic and chymotryptic fragments which reacted with antisera against the pleckstrin homology (PH) domain, whereas less than 5% was recovered in fragments that encompassed the catalytic core. In separate experiments, the isolated delta1-PH domain was also specifically labeled. Equilibrium binding of D-Ins(1,4,5)P3 to PLC-delta1 indicated the presence of a single, high-affinity binding site; binding of D-Ins(1,4,5)P3 to PLC-beta1, -beta2, or -beta3 was not detected. The catalytic activity of PLC-delta1 was inhibited by the product D-Ins(1,4,5)P3, whereas no inhibition of PLC-beta1, -beta2, or -beta3 activity was observed. These results demonstrate that the PH domain is the sole high-affinity PI(4,5)P2 binding site of PLC-delta1 and that a similar site is not present in PLC-beta1, -beta2, or -beta3. The data are consistent with the idea that the PH domain of PLC-delta1, but not the beta isozymes, directs the catalytic core to membranes enriched in PI(4,5)P2 and is subject to product inhibition.
    [Abstract] [Full Text] [Related] [New Search]