These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of aromatic amino acids in carbohydrate binding of plant lectins: laser photo chemically induced dynamic nuclear polarization study of hevein domain-containing lectins. Author: Siebert HC, von der Lieth CW, Kaptein R, Beintema JJ, Dijkstra K, van Nuland N, Soedjanaatmadja UM, Rice A, Vliegenthart JF, Wright CS, Gabius HJ. Journal: Proteins; 1997 Jun; 28(2):268-84. PubMed ID: 9188743. Abstract: Carbohydrate recognition by lectins often involves the side chains of tyrosine, tryptophan, and histidine residues. These moieties are able to produce chemically induced dynamic nuclear polarization (CIDNP) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies accessibility of the respective groups to the light-absorbing dye. In principle, this technique is suitable to monitor surface properties of a receptor and the effect of ligand binding if CIDNP-reactive amino acids are affected. The application of this method in glycosciences can provide insights into the protein-carbohydrate interaction process, as illustrated in this initial study. It focuses on a series of N-acetylglucosamine-binding plant lectins of increasing structural complexity (hevein, pseudohevein, Urtica dioica agglutinin and wheat germ agglutinin and its domain B), for which structural NMR- or X-ray crystallographic data permit a decision of the validity of the CIDNP method-derived conclusions. On the other hand, the CIDNP data presented in this study can be used for a rating of our molecular models of hevein, pseudohevein, and domain B obtained by various modeling techniques. Experimentally, the shape and intensity of CIDNP signals are determined in the absence and in the presence of specific glycoligands. When the carbohydrate ligand is bound, CIDNP signals of side chain protons of tyrosine, tryptophan, or histidine residues are altered, for example, they are broadened and of reduced intensity or disappear completely. In the case of UDA, the appearance of a new tryptophan signal upon ligand binding was interpreted as an indication for a conformational change of the corresponding indole ring. Therefore, CIDNP represents a suitable tool to study protein-carbohydrate interactions in solution, complementing methods such as X-ray crystallography, high-resolution multidimensional nuclear magnetic resonance, transferred nuclear Overhauser effect experiments, and molecular modeling.[Abstract] [Full Text] [Related] [New Search]