These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bacterial overexpression, isotope enrichment, and NMR analysis of the N-terminal domain of human apolipoprotein E. Author: Fisher CA, Wang J, Francis GA, Sykes BD, Kay CM, Ryan RO. Journal: Biochem Cell Biol; 1997; 75(1):45-53. PubMed ID: 9192073. Abstract: The nucleotide sequence encoding the N-terminal domain (residues 1-183) of human apolipoprotein E3 (apoE3) was cloned into the pET expression vector and introduced into Escherichia coli. Induction of protein expression with isopropyl beta-D-thiogalactopyranoside resulted in production of recombinant apoE3(1-183). Immunoblot analysis revealed that recombinant protein was present in both the cell pellet and cell culture supernatant. Analysis revealed that a significant portion of the rApoE3(1-183) in the cell pellet still possessed the bacterial N-terminal pel B leader sequence, encoded by plasmid DNA directly upstream of the apoE3(1-183) coding sequence. By contrast, this hydrophobic leader sequence had been removed from recombinant protein specifically accumulating in the culture medium. This behavior is novel for bacterial expression of apolipoprotein E and its truncated variants and permits efficient overexpression of the recombinant protein (> 100 mg/L cell culture). Recombinant apoE3(1-183) was isolated by a combination of heparin-Sepharose chromatography and reverse-phase HPLC. Electrospray mass spectrometry provided a mass of 21 191 daltons, corresponding directly to that expected from the known sequence. Circular dichroism spectroscopy revealed that the recombinant protein possesses significant amounts of alpha-helical secondary structure. The lipid binding ability of rApoE3(1-183) was evaluated using an in vitro lipoprotein binding assay. It was observed that recombinant apoE3(1-183) protected human low density lipoprotein (LDL) from lipid accumulation induced particle aggregation, indicating that it is capable of associating with lipoprotein surfaces. In addition, rApoE3(1-183) forms disk complexes with the model phospholipid dimyristoylphosphatidylcholine. In competition experiments, it was observed that rApoE3(1-183) phospholipid disks compete with 125I-LDL for binding to the apoB/E receptor on human skin fibroblasts to an extent similar to that observed for intact rApoE3. Taken together, these data show that recombinant apoE3(1-183) is fully functional as an apolipoprotein and receptor ligand. Given the high expression level and its known existence as a monomer in solution, we evaluated the potential for application of NMR spectroscopy to study the structure-function relationship of rApoE3(1-183). Bacteria were cultured in media supplemented with 15NH4Cl or [15N]glycine and the isotopically labeled recombinant apoE3(1-183) was analyzed by heteronuclear single quantum correlation NMR spectroscopy. The data revealed that rApoE3(1-183) is an excellent candidate for solution structure studies by NMR, including conformational adaptations associated with lipid association.[Abstract] [Full Text] [Related] [New Search]