These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Incorporation of [3-3H]glucose and 2-[1-14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: implications for the quantitation of tissue glucose uptake. Author: Virkamäki A, Rissanen E, Hämäläinen S, Utriainen T, Yki-Järvinen H. Journal: Diabetes; 1997 Jul; 46(7):1106-10. PubMed ID: 9200643. Abstract: 2-deoxyglucose has been widely used to quantitate tissue glucose uptake in vivo, assuming that 2-deoxyglucose is transported and phosphorylated but not further metabolized. We examined the validity of this assumption by infusing [3-3H]glucose and 2-[1-14C]deoxyglucose in a similar primed continuous fashion to chronically catheterized, freely moving rats during normoglycemic hyperinsulinemic conditions. The rates of 2-deoxyglucose uptake were determined from the accumulation of 2-[1-14C]deoxyglucose-6-phosphate and 2-[1-14C]deoxyglucose-6-phosphate combined with the rate of the incorporation of 2-[1-14C]deoxyglucose into glycogen in rectus abdominis muscle and the heart. When the rates of glycogen synthesis during the 2-h hyperinsulinemic period from the two tracers were compared in rectus abdominis muscle, the rate of glycogen synthesis was twofold higher when measured with [3-3H]glucose (337 +/- 14 micromol x kg(-1) x min(-1)) than when measured with 2-[1-14C]deoxyglucose (166 +/- 10 micromol x kg(-1) x min(-1), P < 0.001). In the heart, the rate of glycogen synthesis was twofold higher when measured with 2-[1-14C]deoxyglucose (141 +/- 20 micromol x kg(-1) x min(-1)) than when measured with [3-3H]glucose (72 +/- 15 micromol x kg(-1) x min(-1), P < 0.001). The rate of 2-deoxyglucose uptake was 29% underestimated in rectus abdominis muscle, when counts found in glycogen were not included in glucose uptake calculations (398 +/- 25 vs. 564 +/- 25 micromol x kg(-1) x min(-1), P < 0.001). In the heart, glucose uptake was underestimated by 7% if glycogen counts were not taken into account (1,786 +/- 278 vs. 1,926 +/- 291 micromol x kg(-1) dry x min(-1), P < 0.05). The fraction of [3-3H]glucose incorporated into glycogen of total glucose metabolism (calculated from 2-deoxyglucose conversion to 2-deoxyglucose-6-phosphate and glycogen) was 0.6 (337/564) in rectus abdominis muscle and 0.037 (72/1,926) in the heart. We conclude that 2-deoxyglucose is incorporated into glycogen in the heart and in skeletal muscle in vivo under normoglycemic hyperinsulinemic conditions in the rat. Failure to consider the incorporation of 2-deoxyglucose into glycogen will underestimate the rate of tissue glucose uptake. To avoid such problems, the amount of 2-deoxyglucose incorporated into glycogen should be quantitated in subsequent studies.[Abstract] [Full Text] [Related] [New Search]