These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I. Author: Pearlstone JR, Sykes BD, Smillie LB. Journal: Biochemistry; 1997 Jun 17; 36(24):7601-6. PubMed ID: 9200712. Abstract: The actomyosin ATPase inhibitory protein troponin I (TnI) plays a central regulatory role in skeletal and cardiac muscle contraction and relaxation through its calcium-dependent interactions with troponin C (TnC) and actin. Previously we have demonstrated the utility of F29W and F105W mutants of TnC for measurement of binding affinities of inhibitory peptide TnI(96-116) to its regulatory N and structural C domains, both in isolation and in the intact TnC molecule [Pearlstone, J. R. & Smillie, L. B. (1995) Biochemistry 34, 6932-6940]. This approach is now extended to fragment TnI(96-148). Curve-fitting analyses of fluorescence changes induced in the intact TnC mutants and the isolated N and C domains by increasing [TnI(96-148)] have permitted the assignments of K(D) values (designated K(D,N) and K(D,C)) to the interaction of TnI(96-148) with the N and C domains, respectively, of intact TnC. Taken together with the previous data for TnI(96-116) binding, it can be concluded that, within TnI(96-148), residues 96-116 are primarily responsible for binding to C domain of intact TnC and residues 117-148 to its N domain. Inspection of the available mammalian and avian skeletal muscle TnI amino acid sequences reveals a previously unrecognized conserved motif repeated 3-fold, once in the inhibitory peptide region (approximately residues 101-114; designated alpha) and twice more in the region of residues approximately 121-132 (beta) and approximately 135-146 (gamma). The number and distribution of these motifs have important structural implications for the TnI x C complex. In the beta motif of cardiac TnI, as compared with skeletal, several changes in charged amino acids are suggested as candidates responsible for the greater sensitivity of cardiac Ca2+-regulated actomyosin to acidic pH as in ischemia.[Abstract] [Full Text] [Related] [New Search]