These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscarinic reduction of GABAergic synaptic potentials results in disinhibition of the AMPA/kainate-mediated EPSP in auditory cortex. Author: Aramakis VB, Bandrowski AE, Ashe JH. Journal: Brain Res; 1997 May 30; 758(1-2):107-17. PubMed ID: 9203539. Abstract: The present study is concerned with the ability of muscarinic actions of acetylcholine (ACh) to modulate glutamate and gamma-aminobutyric acid (GABA)-mediated synaptic transmission in the in vitro rat auditory cortex. Whole-cell patch clamp recordings were obtained from layer II-III pyramidal neurons, and the fast-EPSP (AMPA/kainate), fast-IPSP (GABA(A)), and slow-IPSP (GABA(B)), were elicited following a stimulus to deep gray/white matter. Acetyl-beta-methylcholine (MCh), a muscarinic receptor agonist, applied by either superfusion or iontophoresis, produced an atropine-sensitive increase or decrease in the amplitude of the fast-EPSP. The effect of MCh could be predicted by the response of the fast-EPSP to paired-pulse stimulation (i.e. a conditioning pulse followed 300 ms later by a test pulse). The fast-EPSP was decreased in amplitude by MCh in cases where the test-EPSP was suppressed in the pre-MCh condition, and increased in amplitude when the test-EPSP was facilitated. The fast- and slow-IPSPs were always reduced by MCh. In several experiments, the strength of synaptic inhibition was systematically modified by varying stimulus intensity. When the fast-EPSP was elicited in the absence of IPSPs, it was decreased in amplitude by MCh. However, when the fast-EPSP was elicited in conjunction with large IPSPs it was increased in amplitude during MCh. Because the magnitude of the fast-EPSP is influenced by the degree of temporal overlap with IPSPs, it was hypothesized that enhancement of the fast-EPSP was the result of disinhibition produced as a consequence of muscarinic reduction of GABAergic IPSPs. This view was supported by the finding that MCh could reduce the amplitude of pharmacologically isolated GABAergic IPSPs (i.e. elicited in the absence of glutamatergic transmission). Our results suggest that ACh at muscarinic receptors can modify fast glutamatergic neurotransmission differently as a function of strength of inhibition, to suppress that produced by 'weak' inputs and enhance that produced by 'strong' inputs.[Abstract] [Full Text] [Related] [New Search]