These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unique push-pull mechanism of dealkylation in soman-inhibited cholinesterases. Author: Viragh C, Akhmetshin R, Kovach IM, Broomfield C. Journal: Biochemistry; 1997 Jul 08; 36(27):8243-52. PubMed ID: 9204869. Abstract: The pH-dependence and solvent isotope effects of dealkylation in diastereomeric adducts of Electric eel (Ee) and fetal bovine serum (FBS) acetylcholinesterase (AChE) inactivated with P(-)C(+) and P(-)C(-) 2-(3,3-dimethylbutyl) methylphosphonofluoridate (soman) were studied at 4.0 +/- 0.2 degrees C. The rate constant versus pH profiles were fit to a bell-shaped curve for all adducts. Best fit parameters are pK1 4.4-4.6 and pK2 6.3-6.5 for Ee AChE and pK1 4.8-5. 0 and pK2 5.8 for FBS AChE. The pKs are consistent with catalytic participation of the Glu199 anion and HisH+440. Maximal rate constants (kmax) are 13-16 x 10(-3) s-1 for Ee AChE and 8 x 10(-3) s-1 for FBS AChE. The solvent isotope effects at the pH maxima are 1.1-1.3, indicating unlikely proton transfer at the enzymic transition states for the dealkylation reaction. Slopes of log rate constant versus pH plots are near 1 at 25.0 +/- 0.2 degrees C between pH 7.0 and 10.0. In stark contrast, the corresponding adducts of trypsin are very stable even at 37.0 +/- 0.2 degrees C. The rate constants for diastereomers of soman-inhibited trypsin at 37.0 +/- 0.2 degrees C are pH independent and approximately 10(4) times smaller than kmax for analogous adducts with AChE. Dealkylation in soman-inhibited AChEs is estimated to occur at >10(10) times faster than a plausible nonenzymic reaction. Up to 40% of the catalytic acceleration can be attributed to an electrostatic push, and an electrostatic pull provides much of the balance. The results of this work together with results of a product analysis by Michel et al. (1969) can be explained by an initial and rate-determining methyl migration from Cbeta to Calpha. This is driven by the high electron density of residues (Glu199 and Trp84) at a crowded active site and may be concerted with C-O bond breaking. The positive charge at the rate-determining transition state is distributed between Cbeta and His440. A tertiary carbocation may have a fleeting existence before it is trapped by water or neighboring electrons which is likely to be promoted by Glu199 as the proton acceptor.[Abstract] [Full Text] [Related] [New Search]