These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The MtrR repressor binds the DNA sequence between the mtrR and mtrC genes of Neisseria gonorrhoeae.
    Author: Lucas CE, Balthazar JT, Hagman KE, Shafer WM.
    Journal: J Bacteriol; 1997 Jul; 179(13):4123-8. PubMed ID: 9209024.
    Abstract:
    Gonococcal resistance to antimicrobial hydrophobic agents (HAs) is due to energy-dependent removal of HAs from the bacterial cell by the MtrCDE membrane-associated efflux pump. The mtrR (multiple transferrable resistance Regulator) gene encodes a putative transcriptional repressor protein (MtrR) believed to be responsible for regulation of mtrCDE gene expression. Gel mobility shift and DNase I footprint assays that used a maltose-binding protein (MBP)-MtrR fusion protein demonstrated that the MtrR repressor is capable of specifically binding the DNA sequence between the mtrR and mtrC genes. This binding site was localized to a 26-nucleotide stretch that includes the promoter utilized for mtrCDE transcription and, on the complementary strand, a 22-nucleotide stretch that contains the -35 region of the mtrR promoter. A single transition mutation (A-->G) within the MtrR-binding site decreased the affinity of the target DNA for MtrR and enhanced gonococcal resistance to HAs when introduced into HA-susceptible strain FA19 by transformation. Since this mutation enhanced expression of the mtrCDE gene complex but decreased expression of the mtrR gene, the data are consistent with the notion that MtrR acts as a transcriptional repressor of the mtrCDE efflux pump protein genes.
    [Abstract] [Full Text] [Related] [New Search]