These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor.
    Author: Sugawara H, Kurosaki M, Takata M, Kurosaki T.
    Journal: EMBO J; 1997 Jun 02; 16(11):3078-88. PubMed ID: 9214625.
    Abstract:
    Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.
    [Abstract] [Full Text] [Related] [New Search]