These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A goldfish Notch-3 homologue is expressed in neurogenic regions of embryonic, adult, and regenerating brain and retina. Author: Sullivan SA, Barthel LK, Largent BL, Raymond PA. Journal: Dev Genet; 1997; 20(3):208-23. PubMed ID: 9216061. Abstract: Members of the Notch gene family are thought to be involved in the regulation of cell fate decisions in a variety of embryonic tissues, particularly in the developing central nervous system (CNS) in Drosophila and vertebrates. In goldfish the CNS continues to develop and add neurons well into adulthood and has the capacity to regenerate new neurons. Using probes derived from Xenopus Notch to screen an adult goldfish retinal cDNA library, followed by 5' RACE, we isolated a partial cDNA for a goldfish Notch homologue, G-Notch. Sequence alignment supported assignment of G-Notch to the Notch-3 class. Northern blot analysis revealed a single transcript of > 8 kb, and RNase protection assays indicated that G-Notch is expressed in eye and brain but not muscle of adult goldfish. The spatiotemporal pattern of expression of G-Notch was defined from early embryonic stages to adulthood by in situ hybridization. Expression in the embryonic CNS was localized to neurogenic regions and was downregulated in differentiated cell populations. In adult goldfish, expression persisted in and adjacent to the germinal zones in the retina and the brain. Weak expression was seen in scattered cells in the inner nuclear layer of the retina, which might include neurogenic stem cells. Following retinal lesions (puncture wounds or laser lesions restricted to photoreceptors in the outer nuclear layer), G-Notch was upregulated in proliferating cell populations throughout the retina, in association with a generalized mitogenic response. In the region of the laser lesion, where earlier studies have demonstrated that photoreceptors are regenerating at 1-3 weeks following the lesion, G-Notch expressing cells were abundant in the outer nuclear layer. These observations suggest that retinal regeneration involves the re-expression of an important developmental signaling molecule in neuroepithelial cells resident in the differentiated retina.[Abstract] [Full Text] [Related] [New Search]