These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The quaternary geometry of transcription termination factor rho: assignment by chemical cross-linking. Author: Horiguchi T, Miwa Y, Shigesada K. Journal: J Mol Biol; 1997 Jun 20; 269(4):514-28. PubMed ID: 9217257. Abstract: Transcription termination factor rho from Escherichia coli is a ring-shaped homohexamer of 419 amino acid subunits and catalyzes an ATP-dependent release of nascent RNA transcripts. Previous chemical cross-linking studies suggested that the rho hexamer might have D3 symmetry with three isologous dimers as protomers. However, our recent mutational analysis of rho alongside its putative structural homology to F1-ATPase rather argued for C6 symmetry. To resolve this discrepancy, we have re-investigated the pattern of cross-linking of rho using various cross-linkers with different functional groups and spacer lengths. Upon reaction with dimethyl suberimidate followed by SDS-polyacrylamide gel electrophoresis, rho protein generated a series of cross-linked oligomers up to hexamers, of which dimers migrated as distinct doublet bands of approximately equal intensities. However, the lower band became much stronger than the upper one with dimethyl adipimidate and difluorodinitrobenzene, and vice versa with disuccinimidyl glutarate, disuccinimidyl suberate and disulfosuccinimidyl tartarate. Furthermore, the trimeric products also produced doublet bands, whose relative intensities were again variable with cross-linkers, but in an inverse correlation with those of the dimer bands. These results combined with theoretical considerations support a C6 symmetry model in which cross-linking is assumed to occur stochastically at one of two alternative sites within each subunit interface with variable relative frequencies depending on cross-linkers. The D3 symmetry is excluded, for the putative trimeric subspecies should always retain mutually equal intensities in that case. Detailed inspections of the cross-linking kinetics further revealed a moderate characteristic of C3 symmetry for the rho hexamer such that the collective as well as relative rates of cross-linking at the two available sites could fluctuate between alternating interfaces. The final model designated as C3/6 is also compatible with other functional and structural properties known for rho.[Abstract] [Full Text] [Related] [New Search]