These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polydeoxyribonucleotide (defibrotide) protects against post-ischemic behavioral, electroencephalographic and neuronal damage in the gerbil. Author: Sala M, Leone MP, Lampugnani P, Matturri L, Gori E. Journal: Eur J Pharmacol; 1997 Jun 11; 328(2-3):143-52. PubMed ID: 9218696. Abstract: The effectiveness of defibrotide, a single-stranded polydeoxyribonucleotide compound, in preventing damage caused by cerebral ischemia was studied. Global ischemia was induced in anesthetized gerbils by bilateral carotid artery occlusion for 10 min. Defibrotide (100 mg/kg) or saline was injected, i.v., immediately after reperfusion. The following parameters were evaluated simultaneously: (1) electroencephalographic (EEG) spectral power, recorded before, during and after the ischemic period; (2) body temperature, monitored with a rectal thermistor probe after reperfusion for 120 min; (3) spontaneous motility, evaluated through a photocell system and quantified in terms of total distance travelled in 30 min, 1 h after recirculation and at periods over 15 days; (4) mnemonic functions assessed by passive avoidance test from 3 to 15 days after ischemia; (5) histological examination, 7 days after reperfusion, counting CA1 hippocampal neuronal cells. The ischemia-induced complete flattening of spectral power was significantly reversed (P < 0.01) by post-ischemic treatment with defibrotide between 30 and 90 min after ischemia. A complete recovery of total EEG spectral power was seen in the defibrotide group at 6 h and the saline ischemic group at 1 day. Seven days after bilateral carotid occlusion, there was a significant decrease in spectral power (-70% +/- 6) together with a loss of the number of CA1 cells in the saline ischemic group (-64%). Treatment with defibrotide significantly protected against the decrease in spectral power (-30% +/- 7) and cell loss (-9%). Finally, the number of animals found to be protected against the ischemia-induced flattening was significantly larger for defibrotide-treated gerbils than for saline-treated animals throughout the experiment except for the third day. Body temperature was significantly decreased only at 30 min after reperfusion in both ischemic and sham-operated groups. Defibrotide reduced ischemia-induced hypermotility but only 6 h after the insult. The ischemia-induced impairment of memory was partially reversed within 3 days in the defibrotide-treated animals and fully reversed within 7 days in the defibrotide group and 15 days in the saline group. Our results demonstrate that defibrotide, even when administered after the post-ischemic period, possesses anti-ischemic properties. The mechanism by which defibrotide protects the ischemic reperfused brain is still largely unknown. However, a neuroprotection via adenosine A1 and A2 subtype receptor interaction can be put forward.[Abstract] [Full Text] [Related] [New Search]