These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 7-Hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Author: Bunch RT, Eastman A. Journal: Cell Growth Differ; 1997 Jul; 8(7):779-88. PubMed ID: 9218872. Abstract: A variety of agents, such as caffeine, have been shown to abrogate the DNA damage-dependent G2 checkpoint and enhance cytotoxicity. However, these agents are too toxic for clinical use. We have reported that the potent protein kinase inhibitor 7-hydroxystaurosporine (UCN-01) at nontoxic doses abrogates the G2 arrest caused by the DNA-damaging agent cisplatin. Here, using Chinese hamster ovary cells, we show that cisplatin causes predominantly an S-phase arrest; UCN-01 abrogates this S-phase arrest, causing progression of cells to G2 and, subsequently, apoptotic cell death. In searching for an explanation for this accelerate DNA synthesis, we discovered that UCN-01 caused translocation of proliferating cell nuclear antigen (PCNA) to the detergent-insoluble, DNA-bound fraction. PCNA acts as a sliding clamp for DNA polymerase delta. Sequestering of PCNA by p21waf1/cip1 is required for p53-dependent G1 arrest in damaged cells. However, the S-phase arrest occurs independently of p53 and p21waf1/cip1. Our results suggest that PCNA is also a component of this S-phase checkpoint, despite the fact that CHO cells are defective for p53, and no increase in p21waf1/cip1 was observed. The mechanism by which PCNA is sequestered in the absence of p21waf1/cip1 and the mechanism by which UCN-01 disrupts this sequestration remain to be elucidated.[Abstract] [Full Text] [Related] [New Search]