These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the amino terminus of the third intracellular loop in agonist-promoted downregulation of the alpha2A-adrenergic receptor.
    Author: Jewell-Motz EA, Donnelly ET, Eason MG, Liggett SB.
    Journal: Biochemistry; 1997 Jul 22; 36(29):8858-63. PubMed ID: 9220972.
    Abstract:
    A prominent feature of long-term regulation of the alpha2A-adrenergic receptor (alpha2AAR) is a loss of cellular receptors over time (downregulation). The molecular determinants of downregulation were sought by targeting regions of the receptor involved in G protein coupling and phosphorylation. Mutated receptors, consisting of chimeric substitutions of analogous beta2-adrenergic receptor (beta2AR) and serotonin 5-hydroxytryptamine1A (5-HT1A) receptor sequence into the second intracellular loop (ICL2) (residues 113-149), the amino terminus (residues 218-235) and carboxy terminus (residues 355-371) of ICL3, and a deletion of the beta-adrenergic receptor kinase (betaARK) phosphorylation sites in the third intracellular loop (ICL3) (residues 293-304), were expressed in Chinese hamster ovary (CHO) cells. Wild-type alpha2AAR underwent 31% +/- 3% downregulation after 24 h of exposure to 100 microM epinephrine. Loss of downregulation was observed with some mutants, but this was not related to functional coupling to inhibitory or stimulatory guanine nucleotide regulatory binding proteins (Gi or GS) or to phosphorylation. Rather, any mutant with a substitution of the amino terminus of ICL3 (regardless of whether the substitution was with beta2AR or 5-HT1A sequence) resulted in upregulation. Studies with an inhibitor of protein synthesis indicated that the primary mechanism of downregulation of the alpha2AAR is agonist-promoted degradation of receptor protein which requires a destabilization sequence in the amino terminus of ICL3. Thus, in contrast to other G protein-coupled receptors, in which G protein coupling or phosphorylation are critical for long-term agonist regulation, the alpha2AAR has a specific structural domain distinct from these other functional regions that serves to direct agonist-promoted downregulation.
    [Abstract] [Full Text] [Related] [New Search]