These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of dietary cadmium on iron metabolism in growing rats. Author: Crowe A, Morgan EH. Journal: Toxicol Appl Pharmacol; 1997 Jul; 145(1):136-46. PubMed ID: 9221832. Abstract: Little is known regarding the interactions between iron and cadmium during postnatal development. This study examined the effect of altered levels of dietary iron and cadmium loading on the distribution of cadmium and iron in developing rats ages 15, 21, and 63 days. The uptake of iron, transferrin, and cadmium into various organs was also examined using 59Fe, [125I]transferrin, and 109Cd. Dietary cadmium loading reduced packed cell volume and plasma iron and nonheme iron levels in the liver and kidneys, evidence of the inducement of an iron deficient state. Dietary iron loading was able to reverse these effects, suggesting that they were the result of impaired intestinal absorption of iron. Cadmium loading resulted in cadmium concentrations in the liver and kidneys up to 20 microg/g in rats age 63 days, while cadmium levels in the brain reached only 0.16 microg/g, indicating that the blood-brain barrier restricts the entry of cadmium into the brain. Iron loading had little effect on cadmium levels in the organs and cadmium feeding did not lower tissue iron levels in iron loaded animals. These results suggest that cadmium inhibits iron absorption only at low to normal levels of dietary iron and that at high levels of intake iron and cadmium are largely absorbed by other, noncompetitive mechanisms. It was shown that 109Cd is removed from the plasma extremely quickly irrespective of iron status and deposits mainly in the liver. One of the most striking effects of cadmium loading on iron metabolism was increased uptake of [125I]transferrin by the heart, possibly by disrupting the process of receptor-mediated endocytosis and recycling of transferrin by heart muscle.[Abstract] [Full Text] [Related] [New Search]